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Abstract

Purpose—Periodontal ligament (PDL) plays critical roles in the development and maintenance 

of periodontium such as tooth eruption and dissipation of masticatory force. The mechanical 

properties of PDL are mainly derived from fibrillar type I collagen, the most abundant 

extracellular component.

Study selection—The biosynthesis of type I collagen is a long, complex process including a 

number of intra- and extracellular post-translational modifications. The final modification step is 

the formation of covalent intra- and intermolecular cross-links that provide collagen fibrils with 

stability and connectivity.

Results—It is now clear that collagen post-translational modifications are regulated by groups of 

specific enzymes and associated molecules in a tissue-specific manner; and these modifications 

appear to change in response to mechanical force.

Conclusions—This review focuses on the effect of mechanical loading on collagen biosynthesis 

and fibrillogenesis in PDL with emphasis on the post-translational modifications of collagens, 

which is an important molecular aspect to understand in the field of prosthetic dentistry.
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1. Introduction

Periodontal ligament (PDL) is a specialized soft connective tissue that attaches the tooth to 

the alveolar bone socket. This fibrous tissue is very dynamic with high cellularity and 

vascularity, and plays critical roles in the development and maintenance of periodontium. 

These include: tooth support, regulation of tooth eruption, dissipation of masticatory forces, 

neurological feedback and orthodontic tooth movement. The mechanical properties of PDL 

are, thus, very important for these functions and they are mainly derived from the primary 

extracellular matrix protein; fibrillar type I collagen. One of the major characteristics of 

PDL collagen is its exceptionally high rate of turnover [1], which could be critical for tooth 

eruption and orthodontic tooth movement. One of the intriguing features of PDL is its ability 

to maintain the tissue without being mineralized despite the fact that it is connecting two 

specialized mineralized tissues, alveolar bone and cementum. Although this tissue is highly 

adaptive to external forces by temporarily changing the tissue space [2], the width remains 

relatively constant throughout its lifetime.

In daily prosthodontic practice, occlusion needs to be adjusted when a dental prosthesis is 

installed. The acceptable range of occlusal adjustment in natural teeth is generally 

considered to be ~30 μm because of the pressure displacement of PDL [3]. If the occlusal 

adjustment is performed inappropriately, it could cause widening of PDL space and 

increment of tooth mobility [4]. This clinical observation underscores the significance of 

optimum mechanical loading in the tissue maintenance of PDL. The expansion of PDL 

space and subsequent increase in tooth mobility are not only due to the expansion of PDL 

fibers, but also to the accelerated tissue turnover in response to mechanical loading [5]. 

Since fibrillar collagen is the predominant extracellular matrix (ECM) component of this 

tissue, it is important to understand how mechanical loading affects cells, subsequent 

collagen biosynthesis and tissue construction. Owing to recent advances in molecular and 

cellular biology and analytical technologies, it is now clear that collagen post-translational 

modifications are highly regulated by groups of specific enzymes, these modifications 

change in response to mechanical forces and ultimately affects collagen fibrillogenesis, 

stability and tissue mineralization [6-12]. This review focuses on the effects of mechanical 

loading on collagen biosynthesis and fibrillogenesis in PDL with emphasis on the post-

translational modification of collagens.

2. Mechanical loading in PDL

The PDL is subject to various mode of mechanical loading in different clinical 

circumstances. For instance, occlusal loading is the intermittent jiggling force and 

orthodontic tooth movement is the continuous static force. Thus, when the effect of 

mechanical loading on PDL is investigated, it is utmost important to carefully consider the 

loading conditions (e.g. mode, magnitude and duration) and interpret the data. Kang et al. 

reported that 2D and 3D cultured PDL-derived cells showed different gene expression 

profiles in response to similar mechanical loading [13]. This indicates that the culture 

environment could also influence on cellular response. To analyze the effect of mechanical 

loading on PDL-derived cells in vitro, a number of investigators have used commercially 

available loading apparatus, such as Flexcell (Flexcell International Co., Hillsborough, NC) 
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[14-19], Strex (STREX Inc., Okayama, Japan) [20,21] and general laboratory centrifuge 

[17,22,23], while others fabricated their own loading devices [24-27]. Since optimal 

mechanical loading varies depending on cell type, culture condition and loading mode, it is 

important to use well defined loading regimen with a thoroughly characterized loading 

apparatus. However, unfortunately, such characterization of loading apparatus has been 

often overlooked [28].

In animal studies, models such as excessive occlusal loading and orthodontic tooth 

movement are frequently used to analyze the effect of mechanical loading in PDL at the 

tissue level. Excessive occlusal loading condition can be created by bite-raising as reported 

by many groups [29-32]. However, with this model, loading conditions such as magnitude, 

frequency and profile of wave cannot be controlled. To overcome this limitation, a motor-

controlled device has recently been developed [33]. Using this device, the recruitment of 

TRAP-positive osteoclasts and the increment of RANKL/OPG ratio, which illustrates the 

osteoblast-mediated osteoclast recruitment, were confirmed in a magnitude- and time-

dependent manner. The orthodontic tooth movements have been simulated by inserting 

elastic rubber band between molars (Waldo method)[34] or by installing coil spring between 

incisor and molar [35]. In these models, the loading condition can be manipulated in a 

relatively well-controlled manner. Histological studies demonstrated that compression side 

of PDL showed destructive changes, while tension side revealed additive changes [35].

Though in vitro studies provide valuable insights as to how certain PDL-derived cells 

respond to the external stress at the molecular level, they cannot replicate the changes in 

vivo as the PDL consists of a variety of cells and extracellular matrices. Thus, in addition to 

an in vitro study, it is indispensable to characterize histological and biochemical changes of 

PDL in response to the mechanical loading by using a well characterized animal model.

3. Collagens in PDL

The major component of PDL is fibrillar collagens including types I, III and V, accounting 

for ~75%, 20% and 5% of collagens, respectively [36,37]. In addition to the fibrillar 

collagens, non-fibrillar collagens such as types IV, VI, XII and XIV are also present as 

minor components in PDL [38,39] (Table 1). Microarray and expressed sequence (EST)-tag 

database studies have indicated that more collagen types, such as type II, XI, XV and XVI, 

are present in PDL [40,41]. Fibrillar collagens are the scaffold that provides tissue with 

form, connectivity and tensile strength; thus, genetic disorders in these collagens can result 

in severe connective tissue-related diseases [42]. While the tensile strength of PDL is 

provided primarily by fibrillar collagens, resistance against compressive forces in this tissue 

is likely carried out by water, hyaluronic acid and various proteoglycans [43]. The diameter 

of PDL collagen fibrils is relatively smaller than those of other connective tissues, likely due 

to the high rate of collagen turnover [1] and the presence of non-collagenous components 

that regulate collagen fibrillogenesis [44]. These fibrillar collagens, i.e. principal fibers in 

PDL, are not mineralized and appear to be highly glycosylated. On the other hand, fibrils of 

the Sharpey’s fibers that are embedded in bone and cementum have a larger diameter and 

are partially mineralized. The site-specific composition and structural characteristics of 
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collagens and non-collagenous components could be an important factor for the function of 

PDL, and to prevent or facilitate proper mineralization.

4. Type I collagen

Type I collagen is the most abundant type of collagen among the collagen superfamily, 

comprising 29 members encoded by at least 44 genes, and is the structural basis for the form 

and mechanical properties in most tissues and organs. It is a heterotrimeric molecule 

composed of two α1 chains and one α2 chain, approximately 300 nm in length and 1.5 nm 

in thickness. The biosynthesis of type I collagen is a long, complex process that includes 

gene transcription, post-translational modifications of proα chains, formation of a triple-

helical procollagen molecule, secretion to ECM, enzymatic processing to form a collagen 

molecule, self-assembly into a fibril and stabilization by covalent intra- and intermolecular 

cross-linking (for details, see recent reviews [6,45,46]) (Fig. 1). Intra- and extracellular post-

translational modifications during biosynthesis are critical for the structural function of 

collagen fibrils. A number of enzymes, their binding molecules and molecular chaperones 

are involved in such modifications and most of these enzymes are collagen specific.

4-1. Epigenetic control of type I collagen

One of the first molecular mechanisms that regulate the gene expression of collagens is 

epigenetic modification, modulating transcription factor accessibility in an inherited manner 

without changing genomic DNA. The main epigenetic mechanisms of gene regulation are 

DNA methylation and histone modification [47]. Several studies have suggested that 

methylation of the cytosine residue at the CpG sequence in the promoter region suppresses 

gene expression, and that demethylation re-activates gene expression. It has reported that the 

age-associated decrease in type I collagen production in PDL cells is partly due to hyper-

methylation in the promoter region of the COL1A1 gene [48,49]. Arnsdolf et al. reported 

that 3 hours of oscillatory fluid flow reduced the DNA methylation of Col1a1 gene promoter 

and associated increase in the expression of Col1a1 gene on mouse bone marrow stromal 

cells [50]. It is thus possible that mechanical loading regulates the gene expression of type I 

collagen in PDL in an epigenetic manner.

4-2. Expression of type I collagen genes

Numerous studies have demonstrated that the gene expression of type I collagen (i.e., 

COL1A1 & COL1A2 in human and Col1a1 & Col1a2 in mice) are altered by mechanical 

loading in PDL-derived cells; however, the results are not consistent. Many have reported 

that the gene expression is up-regulated with mechanical loading [16,17,22,25,51], while 

others have reported it is unchanged or decreased [14,20,26,27,52]. Such inconsistent 

outcomes are likely due to differences in loading regimen (i.e., compression vs. tension, 

cyclic vs. static, frequency, duration.) and culture conditions. Comparative studies have been 

performed in order to analyze the effects of different loading conditions on the gene 

expression of type I collagen in PDL. A recent study by Chen et al. showed that 3% cyclic 

stretching increased the gene expression of COL1A1 but decreased by 10% cyclic stretching 

on human PDL-derived cells [19]. Another study, by He et al. compared the effect of cyclic 

equibiaxial tension and compressive forces on the expression of type I collagen by using 
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human PDL-derived cells [24]. In this study, they reported that ten hours of 10 % tension 

force increased the expression of COL1A1 gene, however, same magnitude of compressive 

force decreased the expression of COL1A1 gene. These data suggest that the effect of 

mechanical loading on type I collagen gene expression in PDL cells is magnitude-, duration- 

and mode-dependent.

4-3. Post-translational modifications of type I collagen

It has been reported that there is a discrepancy between the expression of genes encoding 

type I collagen (i.e., COL1A1 and COL1A2) and the production of type I collagen protein 

[53] (Fig. 2). Such discrepancies occur, in part, due to the complex biosynthesis process [46] 

including the sequential and multiple processes of post-translational modifications necessary 

for proper proα chain folding into triple helix, fibrillogenesis and stabilization of fibrils. 

Thus, to characterize the response of PDL cells to mechanical loading, it is necessary to 

analyze not only the gene expression of type I collagen itself, but also the expression of 

collagen modifying enzymes, their associated molecules and molecular chaperons.

4-3-1. Prolyl Hydroxylases—The majority of proline (Pro) hydroxylation of collagen 

(~99%) is in the form of 4-hydroxyproline (4-Hyp). It occurs in the sequence of -X-Pro-Gly 

(glycine)- being catalyzed by prolyl-4-hydroxylase (P4H). This modification is critical for 

the stabilization of triple helix conformation [54]. A very small number of Pro hydroxylation 

(~1%) occurs in form of 3-Hyp at Pro in the sequence of –Pro-4Hyp-Gly- catalyzed by the 

collagen prolyl 3-hydroxylation complex (P3H). In type I collagen, the major target residues 

for P3H are α1-Pro986 and α2-Pro707 [55,56]. Recently, much attention has been paid on 

this particular modification as defects in the genes encoding the components of the P3H 

complex cause recessive osteogenesis imperfect [55]. The complex is composed of prolyl 3-

hydroxylase 1, cartilage-associated protein and cyclophilin B, residing in the endoplasmic 

reticulum. It is still not clear, however, how the lack of 3-hydroxylation in Pro causes such 

severe connective tissue phenotypes. Possibly, defects in this complex may also affect 

proper Lys modifications as some of them interact with lysyl hydroxylases [57], which 

could lead to defective collagen cross-linking [58]. The extent of 3-Hyp in PDL type I 

collagen is unknown. The expression of P4H in PDL cells was reported previously [59], 

however; there have been no reports on the expression of P3H, and the mechano-

responsiveness of these genes in PDL.

4-3-2. Lysyl Hydroxylases—Specific lysine (Lys) residues of collagen can also be 

hydroxylated in the form of 5-hydroxylysine (Hyl). This modification is catalyzed by lysyl 

hydroxylases (LHs) encoded by procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD) 

genes. Lys hydroxylation occurs both in the helical-, and C- and N-telopeptide domains of 

type I collagen molecule. In the helical domain, it if formed in the sequence of -X-Lys-Gly 

(glycine)-, and in the telopeptide domains in -X-Lys-Ala (alanine)- and -X-Lys-Ser (serine) - 

sequences. To date, three isoforms of LHs have been identified (LH1-3) and partially 

characterized.

The substrate specificities of these isoforms in vivo are still not clearly established; however, 

substantial evidence indicate that LH1 primarily hydroxylates Lys residues in the helical 
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domains of fibrillar and non-fibrillar collagens [60]. For LH2, two alternatively spliced 

isoforms were identified, i.e. LH2a or LH2 (short) and LH2b or LH2 (long), respectively. 

The latter (LH2b) includes an additional 21 amino acids (exon 13A) and appears to be the 

major form of LH2 in most tissues [61]. Several studies indicate that LH2 (LH2b) functions 

as a telopeptidyl LH [10,62-64]. LH3 is a multifunctional enzyme possessing LH, GT 

(hydroxylysyl galactosyltransferase) and GGT (galactosylhydroxylysyl glucosytransferase) 

activities [65]. However, for type I collagen, the main function of LH3 appears to be GGT 

not LH or GT [7,8](see section 4-3-3 for GTs and GGTs).

It has also been reported that various factors influence the expression of LHs and subsequent 

Lys hydroxylation, including growth factors [66] and vitamin D [67], as well as mechanical 

loading [11,68,69]. Saito et al. reported that twenty-gram of gravitational force increased the 

gene expression of LH2 in an osteoblastic cell culture, while simulated zero-gravity 

increased the gene expression of LH1 [69]. In PDL-derived cells, it was reported that the 

static compressive force induces the expression of LH2 [70]. We also confirmed that LH2 

responded to both static and cyclic compressive force in human PDL-derived cells and the 

PDL of excessively occluded molars in rat (Fig. 3, Kaku M, unpublished data). The LH2 is a 

causative gene in Bruck syndrome, which is characterized by osteoporosis, joint contracture 

at birth, fragile bones and short stature, and exhibits under hydroxylation of Lys residues in 

telopeptides of type I collagen in bone; however, cartilage and ligament collagen shows 

normal hydroxylation of telopeptidyl Lys and normal patterns of cross-linking [64,71]. 

These results suggest that tissue-specific changes in Lys hydroxylation in type I collagen by 

mechanical loading may contribute to the tissue-specific collagen cross-linking pattern (see 

section 4-3-6).

4-3-3. Molecular Chaperones and Peptidyl-proryl cis-trans isomerases—Heat 

shock protein 47 (HSP47) is a collagen-specific molecular chaperone that inhibits collagen 

aggregation in the endoplasmic reticulum by binding a proα chains, facilitating the correct 

folding into the triple helix [72,73]. Transgenic mouse studies revealed that mutations in 

HSP47 cause collagen-related genetic disorders such as osteogenesis imperfecta [74,75]. As 

the nature of heat shock protein, HSP47 is responsive to various stimuli, including heat 

stress, growth factors and mechanical loading, HSP47 rapidly detects mechanical loading 

and affects type I collagen fibrillogenesis [76,77].

Secreted Protein Acidic and Rich in Cysteine (SPARC)/osteonectin was originally identified 

as a collagen-binding glycoprotein, playing an extracellular role in collagen fibrogenesis 

[78]. SPARC is preferentially expressed in tissues with a high rate of collagen turnover, 

including PDL. SPARC-null mice demonstrated that the number of cells and collagen 

volume were markedly diminished in PDL, indicating crucial roles in PDL homeostasis 

[79]. Recent studies have shown that secreted SPARCs are internalized to cells and act 

intracellulary as molecular chaperones in concert with HSP47 [80-82]. Since both SPARC 

and HSP47 are known to be expressed in response to various stresses [82], these molecules 

may have some roles in the collagen fibrillogenesis in PDL in response to mechanical 

loading.
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Proline isomerization is the rate-limiting step during triple helical formation of procollagen 

and this is catalyzed by a group of isomerases, Peptidylprolylisomerase (PPIase). Among 

seven PPIases residing in rough endoplasmic reticulum, three of them have been shown to 

be involved in procollagen biosynthesis, i.e. cyclophilin B, FK506-binding protein (FKBP) 

65 and 22 [57]. The absence of these proteins lead to a recessive form of osteogenesis 

imperfecta or kyphoscoliotic type of Ehlers-Danlos Syndrome (type VI). PPIases form 

complexes with many collagen related proteins and play important roles in the collagen 

fibrillogenesis, however, to date, there are no reports regarding the expression and mechano-

responses of PPIases in PDL cells.

4-3-4. Glycosyl transferases—Type I collagen glycosylation is O-linked glycosylation 

occurring at specific Hyl residues in the helical domain of the molecule, thus, Lys 

hydroxylation catalyzed by LHs is prerequisite for this modification. Structurally, galactose 

is attached to the hydroxyl group of Hyl by a β-glycosidic bond, while glucose is linked by 

an α-glycosidic bond to C-2 of the galactose [6]. These modifications are catalyzed by two 

groups of collagen glycosyltransferases i.e. hydroxylysyl galactosyltransferase (GT) and 

galactosylhydroxylysyl glucosyltransferase (GGT) (see section 4-3-2) producing 

galactosylhydroxylysine (G-Hyl) and glucosylgalactosylhydroxylysine (GG-Hyl), 

respectively [6]. With regard to GT, GLT25D1 and GLD25D2 have been identified [83]. 

The Gld25d1 showed broad expression in several tissues, while Glt25d2 was expressed in 

only a limited number of cell types, suggesting that GLT25D1 is the major isoform [83]. As 

for GGT, recent studies have indicated that LH3 is the major GGT enzyme for type I 

collagen [7,8,83]. The level of glycosylation differs among different types of collagen and, 

even within the same type of collagen, it differs from tissue to tissue. It has been reported 

that collagen glycosylation may contribute to structural and biological functions, such as 

control of collagen fibrillogenesis [84-87], collagen cross-linking [37,88,89] and collagen-

cell interaction [90,91]. It has been reported that altered collagen glycosylation is associated 

with bone disorders, such as osteogenesis imperfecta [92-94], postmenopausal osteoporosis 

[95,96] and osteosarcoma, osteofibrous dysplasia [97], suggesting the significant roles of 

collagen glycosylation in mineralization. The most predominant glycosylated site of type I 

collagen, α1/2 Hyl-87, is one of the major helical cross-linking sites [98,99]. A recent study 

demonstrated that the glycosylation pattern is significantly different between immature and 

mature cross-links in types I and II collagen [100]. This, together with a report by 

Srichiolpech et al. suggest that di-glycosylation negatively controls the process of cross-link 

maturation [7]. It is interesting to note that, in PDL type I collagen, the cross-links involving 

α1/2 Hyl-87 PDL are mostly di-glycosylation forms, and they are predominantly immature 

cross-links [37]. This specific glycosylation pattern in PDL type I collagen may be 

associated with the smaller diameter of PDL collagen fibrils and possibly contribute to 

maintenance of non-mineralized state of this tissue.

4-3-5. Lysyl Oxidases—Once a triple-helical procollagen is formed, the molecules are 

packaged and secreted to the extracellular matrix (ECM) through the Golgi apparatus. In the 

ECM, the N- and C-terminal propeptide extensions are cleaved by procollagen proteinases 

generating a mature type I collagen molecule. These molecules are then self-assemble to 

form a fibril; a process called “fibrillogenesis”, and stabilized by the formation of covalent 
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intra- and intermolecular cross-linking (see section 4-3-6). In order to initiate cross-linking, 

the telopeptidyl Lys or Hyl need to be converted to the respective aldehyde forms, Lysald 

and Hylald, by oxidative deamination catalyzed by an enzyme, lysyl oxidase (LOX). Once 

aldehyde is formed, the rest of the condensation reactions are spontaneous. These aldehydes 

spontaneously react with other aldehydes or ε-amino groups of unmodified Lys and Hyl 

residues to form a variety of intra- and intermolecular cross-links, which are critical for the 

formation of mechanically functional collagen fibrils. Together with the LOX, several 

isoforms of LOX, i.e. LOX-like proteins (LOXL1-4) have been identified. Recent findings 

revealed that LOX and LOXL proteins could be involved in various molecular functions 

other than collagen and elastin cross-linking, including chemotactic responses, tumor 

suppression and controlling growth factor activity. [101,102]. Increases in LOX expression 

in response to mechanical loading have been reported in bone marrow stromal cells [103], 

dermal fibroblast [104] and PDL-derived cells [19]. LOX is synthesized as proLOX and is 

processed by BMP1/Tolloid-like proteinases, the same proteinases that cleave the C-

propeptide of type I procollagen, to form mature and active LOX [105]. It has been reported 

that the BMP1-mediated proteolytic activation of LOX is coordinately regulated by periostin 

which is a secretory matricellular protein, expressed in collagen-rich fibrous connective 

tissues, including PDL [106,107]. The PDL in periostin-null mice exhibits irregular 

collagenous fibrils and changes in the organization of major ECM proteins such as type I 

collagen, fibronectin and tenascin-C [108-110]. Orthodontic tooth movement increased the 

expression of periostin in wild type mice but resulted in the expansion of PDL width with 

the decreased immunolocalization of cathepsin K, MMP1 and MMP2 in periostin null-mice 

[109]. These results suggest that proteolytic regulation of LOX activity could be different in 

PDL.

4-3-6. Collagen cross-links—The final step of collagen biosynthesis is the formation of 

covalent intra- and intermolecular cross-links (for a review, see [6,111,112]). The 

importance of collagen cross-linking cannot be over-emphasized, as it is the molecular basis 

for the tissue stability. As described above, the formation of Lysald or Hylald in the 

telopeptides by the action of LOX initiates the cross-linking process, and the rest of the 

condensation reactions are non-enzymatic. Many factors determine cross-linking pattern 

including: the initial aldehyde form (Lysald or Hylald), extent of hydroxylation of the 

juxtaposed Lys residues on a neighboring molecule, glycosylation of Hyl involved in the 

reaction and microenvironment such as mechanical loading, mineralization and turnover rate 

[6]. Since these modifications and microenvironment vary among different cell types and 

tissues, collagen cross-linking pattern is highly tissue-specific and reflects tissue’s 

physiological state and function. For instance, it has been reported that PDL type I collagen 

possesses abundant amounts of immature cross-links (three major reducible cross-links) 

with only small amounts of mature, stable cross-links [37]. Such pattern would allow the 

tissue to have high tensile strength, but at the same time to be readily turned over. 

Interestingly the bi-functional immature cross-links in PDL are mostly di-glycosylated 

which may also contribute to the negative control of collagen maturation. Though what 

precisely controls this specific cross-linking pattern in PDL is not clearly understood, 

specific microenvironment including constant mechanical loading would certainly be a 

contributing factor.
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To the best of our knowledge, only one paper reported the direct measurement of the 

changes in collagen cross-linking in response to mechanical loading in PDL. Plecash et al. 

analyzed the composition of two immature, bi-functional cross-links in the occluded and 

non-occluded PDL of dogs (2, 4 and 6 weeks) and observed no significant difference among 

the different groups, concluding that a high rate of collagen turnover in PDL is intrinsic but 

not as a result of external or eruptive force [113]. However, the data need to be interpreted 

carefully as the number of analysis is very limited, i.e. single analysis per time point, use of 

a different type of dog at each time point, and lack of quantitative analysis for other cross-

links in PDL. In another study, it has been reported that the bovine PDL exhibits no 

significant changes in the quantities of the two immature, bi-functional collagen cross-links 

during development and maturation [114]. But similar limitations may apply to this study. 

Further studies are needed to elucidate the effect of mechanical loading on the collagen 

cross-linking in PDL.

Effect of mechanical loading on the collagen cross-linking in bone has been relatively well 

investigated. Shiiba et al. reported that, employing a rat tail suspension model, mechanical 

unloading significantly changed the composition of collagen cross-links likely due to an 

increase in Lys hydroxylation [11,68]. Saito et al. reported that hyper-gravitational force 

enhanced not only the total reducible and non-reducible cross-link contents and the rate of 

cross-link maturation in an osteoblast culture system [69].

5. Other types of collagen

Type III collagen is a fibrillar collagen comprising three α1 chains and is typically co-

localized with type I collagen within the same fibril [115]. The PDL contains a considerable 

amount of type III collagen (~20%) as compared with bone (~1%), cementum (~5%) and 

gingiva (~10%), however, the functional significance of the type III collagen in PDL is 

poorly understood. This amount of type III collagen is relatively high for mature connective 

tissue and is more characteristic of fetal connective tissue. Deficiency in Col3a1 gene, which 

encodes type III collagen, in mice results in shorter lifespan due to the rupture of major 

blood vessels; therefore, type III collagen is considered to be essential for normal type I 

collagen fibrillogenesis [116]. In humans, patients with type IV Ehlers-Danlos syndrome, 

which shows fragile and inextensible connective tissues, lack the expression of type III 

collagen [117]. Increases in type III collagen were observed in early phases of wound 

healing and were eventually replaced with type I collagen [118]. In particular, in the early 

healing process, Sharpey’s fiber-like structure in the tendon-bone interface express type III 

collagen [119-121]. Furthermore, increases in type III collagen expression in response to 

mechanical loading has been reported in dermal fibroblasts , mesenchymal stem cells [122], 

anterior crucial ligament cells [123] and medial collateral ligament [124]. Expression of type 

III collagen in PDL-derived cells is reported to increase at lower-magnitude of loadings, but 

decrease at higher-magnitude of loadings [19]. The abundance of type III collagen in PDL 

may therefore be related to a key function in PDL, such as the integrity of the PDL-bone and 

-cementum interface, or is a consequence of the PDL’s rapid turnover [1].

Type XII collagen is a member of fibril-associated collagens with interrupted triple helices 

(FACIT), originally identified in bovine PDL [125]. The type XII collagen is a homo-trimer 
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of α1 chains and each chain has two triple helical collagenous domains (COL1 and 2) with 

three separate noncollagenous domains (NC1-3). The collagenous domains, which comprise 

only ~7.7% of the molecule, have an affinity for fibrillar collagen (i.e., type I and III 

collagen in PDL) [126,127] and non-triple-helical domains provide sites for interaction with 

other extracellular matrix such as fibromodulin, decorin and tenascin-XB [128,129]. Type 

XII collagen has been shown to be mainly expressed in the dense collagenous connective 

tissues of tendons, ligaments, dermis, cornea blood vessel walls [130] and to be distributed 

in well-organized mature fibrils [131]. In PDL, type XII collagen is expressed in a mature/

functional stage, as compared with developing stages, while the expression of type I 

collagen decreases with maturity [39,132]. Tzortzaki et al. speculated that type XII collagen 

transiently stabilizes the type I collagen fibrils until LOX catalyzes the inter-molecular 

collagen cross-linking [133]. Type XII collagen-expressing cells were localized on the 

alveolar bone side of PDL, where mature collagenous fibers are accumulated in comparison 

with the cementum side [134]. A transgenic mouse line carrying a dominant interference 

mutation of the type XII collagen gene demonstrated disorganized collagen fibers associated 

with internal porosity in PDL [135]. Type XII collagen is mainly present in two splicing 

variants, a large form (XIIA), and a small form (XIIB) [136,137], and these are generally co-

expressed in a mutually exclusive manner. Only the XIIA isoform contains sulfated 

glycosaminoglycans in an NC3 domain and is therefore a proteoglycan. XIIA is generally 

found in the developing tissue, whereas type XIIB is expressed in the mature tissue; 

therefore, it is anticipated that adult PDL predominantly contains XIIB [138].

The expression and alternative splicing of type XII collagen is known to be regulated by 

mechanical loading in various cell, such as fibroblasts [139,140], trabecular meshwork cells 

[141], vascular endothelial cells [142] and osteoblasts [143], as well as PDL-derived cells 

[20,138]. The promoter activity of type XII collagen is directly stimulated by mechanical 

loading, thus suggesting the conservation of a stress-response element [143,144]. 

Upregulation of type XII collagen occurs during orthodontic tooth movement in the cells on 

the tension side, where there is an abundance of mature collagen fibers [138]. Taken 

together, these observations suggest that type XII collagen is responsible for the 

organization of collagenous fibers in response to mechanical loading in mature PDL.

6. Small leucine-rich proteoglycans (SLRPs)

Small leucine-rich proteoglycans (SLRPs) belong to the LRR superfamily of proteins, 

constituting a network of signal regulation mostly at the extracellular level [145,146]). 

SLRPs regulate collagen fibrillogenesis by binding to specific sites of collagen molecules. 

Several SLRP family members have been identified in PDL [147,148]. The role of SLRPs in 

collagen fibrillogenesis and subsequent tissue conformation have been extensively studied in 

either single- or double-mutant transgenic mice [149]. Targeted deletion of decorin, 

fibromodulin, lumican or both lumican and fibromodulin resulted in the formation of 

abnormal collagen fibrils and fiber organization was evident in the PDL [148]. The decorin-

null mice displayed larger diameter collagen fibers with randomly arranged orientation in 

PDL. In addition to collagen phenotype, the number of fibroblasts in the PDL is doubled in 

decorin-deficient mice, indicating hyper-cellularity due to increased proliferation in the 
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absence of inhibitory signals from decorin [150,151]. Some SLRPs, (e.g., decorin and 

biglycan) are reported to be responsive to mechanical loading in PDL-derived cells [51,152].

Another SLRP member, asporin, is predominantly expressed in PDL. Unlike other SLRP 

family members, asporin does not possess a glycosaminoglycan chain, thus, not a 

proteoglycan. Asporin is associated with various bone and joint diseases, including 

osteoarthritis, rheumatoid arthritis and lumbar disc disease, and it binds to collagens to 

complement decorin, and it appears to regulate collagen fibrillogenesis and 

biomineralization [153]. Asporin also binds to TGF-beta [154] and BMP-2 [155] and it is 

thought to be negatively regulating their activities to prevent non-physiological 

mineralization of PDL such as in ankylosis.

7. Future Directions

The biosynthesis of type I collagen is a complex process, involving several post-translational 

modifications. These modifications are functionally important and are in part regulated by 

mechanical loading at different stages (Summarized in Fig. 4). Thus, with the tissue’s 

exposure to constant mechanical loading, it is likely that PDL collagen has unique molecular 

and structural characteristics that have been just partially elucidated.

To analyze the changes in post-translational modifications of collagen, high performance 

liquid chromatography (HPLC)-based biochemical analysis have been the gold standard 

[37,156]. By the HPLC-based analysis, collagen contents and the extent of post-translational 

modifications are determined in a quantitative manner [156]. Recently, liquid 

chromatography-tandem mass spectrometry (LC/MC) has become a powerful tool to 

characterize the post-translational modifications of collagens in a molecular site-specific and 

semi-quantitative fashion [58,157]. Data obtained from such analytical methods in various 

experimental models would provide valuable insights into the biochemical characteristics of 

PDL collagen, its response to mechanical loading and their biological significance.

However, due to the thin, small, membrane-like structure of PDL, it is still technically 

challenging to collect sufficient amount of tissue samples for biochemical analysis. To 

characterize the spatial differences of collagen organization and maturation in PDL, 

polarized light-based birefringence analysis have been used [158]. More recently, 

microscope-equipped vibrational spectroscopy, including Fourier transform infrared (FTIR) 

and Raman techniques, has been developed to characterize the chemical composition and 

bonding microenvironment of the tissue constituents [159,160]. FTIR analysis could be used 

to characterize the extent of collagen cross-link maturation at the tissue level [161], thus, 

utilization of such imaging techniques could be useful to characterize the effects of 

mechanical loading on the collagen maturation, fibrillogenesis and matrix organization of 

PDL in appropriate animal models.

In order to identify the mechano-responsive molecules in PDL, microarray technology has 

been utilized over the last decade; however, the data have been inconsistent 

[13,20,40,51,52,70,162-168] likely due to the differences in culture conditions, loading 

regimens and the nature of primary cells used. It should be kept in mind that PDL harbors 

many cell types, e.g., fibroblasts, osteoblasts, cementoblasts, endothelial cells, epithelial cell 
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rests of Malassez and osteoclasts. Furthermore, fibroblasts, the principal cells in PDL, can 

be further classified into sub-populations with different functional characteristics [169]. It is 

evident that, significant number of peri-vascular stem cells are present in PDL [170,171]. 

These cells can, in theory, differentiate into any types of cells in PDL, however, the factors 

that control the fate of PDL stem cells are still poorly understood. Possibly, site-specific 

mechanical loading and microenvironment of stem cells such as the mechanical property of 

ECM are contributing factors [172,173].

As summarized in this review, mechanical loading regulates the collagen biosynthesis in a 

tissue specific manner that could directly affect the mechanical function of PDL. The 

expression of collagen post-translational enzymes and their associated molecules (Table 2), 

and the response of these molecules to mechanical loading as a function of anatomical 

location in PDL will be an important subject to study in the field of prosthetic dentistry.
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Pro Proline

P4H Prolyl-4-hydroxylase

P3H Prolyl-3-hydroxylase

Lys Lysine

LH Lysyl hydroxylase

GGT Galactosylhydroxylysine-glucosyl transferase

GT Hydroxylysyl galactosyl transferase

LOX Lysyl oxidase

FACIT Fibril-associated collagens with interrupted triple helices

SLRPs Small leucine-rich proteoglycans

HPLC High performance liquid chromatography

LC/MC Liquid chromatography-tandem mass spectrometry

FTIR Fourier transform infrared
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Fig. 1. Schematic image of biosynthesis of type I collagen
A series of collagen-modifying enzymes, molecular chaperones and associated molecules 

participate in the normal secretion and proper function of type I collagen. After or during the 

translation of α-chains of type I collagen, specific proline and lysine residues are 

hydroxylated by PHs and LHs, respectively. Following the hydroxylation of lysine residue, 

GLT25D serves as a GT and LH3 serves as a GGT. HSP47 and SPARC facilitate the folding 

of three α-chains into triple helical structures as molecular chaperones. The triple helical 

procollagen molecules are secreted to the extracellular space and then both N- and C-ends 

are cleaved by PNP and PCP to form mature type I collagen. LOX catalyzes aldehyde 

formation in the telopeptide domains of mature type I collagen. These aldehydes 

spontaneously react with other aldehydes or unmodified lysine and hydroxylysine residues 

to form various intra- and intermolecular cross-links. The FACITs and SLRPs bind to the 

surface of type I collagen fibrils and regulate fibrillar growth. PH, Prolyl hydroxylase; LH, 

Lysyl hydroxylase; GT, Hydroxylysine galactosyl transferase; GGT, 

Galactosylhydroxylysine-glucosyl transferase; PPIase, Peptidylprolylisomerase; PNP, 

Procollagen N proteinase; PCP, Procollagen C proteinase; LOX, Lysyl oxidase; FACITs, 

Fibril associated collagens with interrupted triple helices; SLRPs, Small leucine-rich 

proteoglycans. See text for details. Modified from (Yamauchi, 2002)[45].
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Fig. 2. Relationship between type I collagen mRNA and cell layer collagen protein accumulation
MC3T3-E1 osteoblastic cell line was cultured in differentiation medium, and gene 

expression of Col1a1 and cell layer type I collagen contents were analyzed by Northern blot 

and amino acid analysis, respectively. Col1a1 gene expression was highest at day 7 and 

decreased gradually thereafter, while extracellular collagen accumulation became evident 

after 9 days of culture. Such discrepancies occurs, in part, due to the complex biosynthesis 

process including post-translational modifications (shown in Fig.1) Modified from (Hong et 

al., 2004)[53].
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Fig. 3. Mechanical occlusal loading induces LH2 expression on alveolar bone side of PDL
Eight-week-old male SD rats were subjected to 3 days of excessive occlusal loading (Kaku 

et al., 2005)[29]. Decalcified, paraffin embedded histology samples were prepared and the 

distribution of LH2 was analyzed by means of immunohistochemistry. Anti-LH2-positive 

cells were detected only at the bone side PDL in the experimental group (arrow heads).
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Fig. 4. Mechanical loadings affects the expression of type I collagen and its post-translational 
modifications in PDL at multiple steps
The collagen-modifying enzymes and -associated molecules which are crucial for collagen 

fibrillogenesis are summarized in this figure. Various factors of mechanical loading, such as 

mode, magnitude, frequency and duration, affect the response of PDL-fibroblasts. Black 

arrows indicate the known mechano-responsive collagen-related molecules in PDL. Other 

molecules could be affected by mechanical loading in PDL, but not have been tested. The 

changes in collagen fibrillogenesis exert influence on the tissue mechanical properties, tissue 

turnover and most likely phenotypic control of stem cells in PDL. PH, Prolyl hydroxylase; 

LH, Lysyl hydroxylase; GT, PPIase, Peptidylprolylisomerase; Hydroxylysine galactosyl 

transferase; GGT, Galactosylhydroxylysine-glucosyl transferase; PNP, Procollagen N 

proteinase; PCP, Procollagen C proteinase; LOX, Lysyl oxidase; SLRPs, Small leucine-rich 

proteoglycans. See main text for detail.

Kaku and Yamauchi Page 26

J Prosthodont Res. Author manuscript; available in PMC 2015 October 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Kaku and Yamauchi Page 27

Table 1

Collagens found in Periodontal Ligament

Collagen Form Gene Human
disease

Mechano-re
sponse

References

Type I Fibrillar COL1A1, COL1A2 OI,
EDS type VIIA and VIIB

◯ [38,138]

Type II Fibrillar COL2A1 Chondrodysplasia,
Osteoarthrosis

◯ [40]

Type III Fibrillar COL3A1 EDS type IV ◯ [19,38,40]

Type IV Basement
membrane

COL4A1, COL4A2,
COL4A3, COL4A4,
COL4A5, COL4A6

Alport syndrome ND [174]

Type V Fibrillar COL5A1, COL5A2,
COL5A3, COL5A4

EDS type I and II ◯ [38,175]

Type VI Beaded filament COL6A1, COL6A2,
COL6A3

Bethlem myopathy,
Ullrich muscular dystrophy

◯ [38,175]

Type XII FACIT
(PG)

COL12A1 Unknown, Disruption of
PDL in KO mice

◯ [38,138]

Type XI Fibrillar COL11A1, COL11A2 Chondrodysplasias
Osteoarthrosis

◯ [40,41]

Type XIV FACIT
(PG)

COL14A1 Unknown ND [38]

Type XV
(EST-base)

Basement
membrane
(PG)

COL15A1 Unknown ND [41]

Type XVI
(EST-base)

FACIT COL16A1 Unknown ND [41]

UN; Unknown

ND; Not determined

PG; Proteoglycan

FACIT; Fibril associated collagens with interrupted triple helices

EST-base; Detected only in EST-base analysis

EDS; Ehlers-Danlos syndrome

OI; Osteogenesis imperfecta
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Table 2

Collagen-modifying enzymes and molecular chaperones in PDL

Protein name
(gene symbol)

Function Human
disease

Expression
in PDL

Mecliano-
response
in PDL

References

Prolyl-4-hydroxylases PH UN ◯ ND [59]

Prolyl-3-hydroxylase PH UN ND ND

LH1 (PLOD1) LH EDS type VIA ◯ - (Kaku, unpublished)

LH2 (PLOD2) LH Bruck syndrome ◯ ◯ [70](Kaku, unpublished)

LH3 (PLOD3) GGT Connective tissue disorder ◯ - (Kaku, unpublished)

GLT25D1 GT UN ND ND

GLT25D2 GT UN ND ND

HSP47 Molecular
chaperone

OI type X ◯ ◯ [176]

SPARC Molecular
chaperone

UN ◯ ND [79]

Cyclophilin B (PPIB) PPIase OI type IX ND ND

FKBP65 (FKBP10) PPIase OI type XI, Bruck syndrome ND ND

FKBP22 (FKBP14) PPIase EDS type VIA and VIB ND ND

ADAMTS-2 PNP EDS type VIIC ND ND

ADAMTS-3 PNP UN ND ND

ADAMTS-14 PNP UN ND ND

BMP1/TLD PCP OI type XIII ◯ ND [177]

LOX LO Lathyrism ◯ ◯ [19,178]

LOXL1 LO Exofoliation syndrome ◯ ND [178]

LOXL2 UN UN ◯ ND [178]

LOXL3 UN UN ND ND

LOXL4 UN UN ND ND

PH; Prolyl hydroxylase

GT; Hydroxylysine galactosyl transferase

GGT; Galactosylhydroxylysine-glucosyl transferase

FKBP; FK506 binding protein

PNP; Procollagen N proteinase

LOX; Lysyl oxidase

OI; Osteogenesis imperfecta

UN; Unknown

LH; Lysyl hydroxylase

PPIase; Peptidylprolylisomerase

PCP; Procollagen C proteinase

EDS; Ehlers-Danlos syndrome

ND; Not determined
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